BACKGROUND AND THE PURPOSE OF THE STUDY: Affinity-based target deconvolution is an emerging method for the identification of interactions between drugs/drug candidates and cellular proteins, and helps to predict potential activities and side effects of a given compound. In the present study, we hypothesized that a part of safranal pharmacological effects, one of the major constituent of Crocus sativus L., relies on its physical interaction with target proteins. METHODS: Affinity chromatography solid support was prepared by covalent attachment of safranal to agarose beads. After passing tissue lysate through the column, safranal-bound proteins were isolated and separated on SDS-PAGE or two-dimensional gel electrophoresis. Proteins were identified using MALDI-TOF/TOF mass spectrometry and Mascot software. RESULTS AND MAJOR CONCLUSION: Data showed that safranal physically binds to beta actin, cytochrome b-c1 complex sub-unit 1, trifunctional enzyme sub-unit beta and ATP synthase sub-unit alpha and beta. These interactions may explain part of safranal's pharmacological effects. However, phenotypic and/or biological relevance of these interactions remains to be elucidated by future pharmacological studies.
Affinity-based target deconvolution of safranal.
基于亲和力的藏红花醛靶标反卷积
阅读:3
作者:Hosseinzadeh Hossein, Mehri Soghra, Abolhassani Mohammad Mahdi, Ramezani Mohammad, Sahebkar Amirhossein, Abnous Khalil
| 期刊: | Daru-Journal of Pharmaceutical Sciences | 影响因子: | 2.100 |
| 时间: | 2013 | 起止号: | 2013 Mar 20; 21(1):25 |
| doi: | 10.1186/2008-2231-21-25 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
