A major source of "high-output" NO in inflammation is inducible nitric oxide synthase (iNOS). iNOS is primarily transcriptionally regulated and is thought to function as an uncontrolled generator of high NO. We found that iNOS in cytokine-stimulated human lung microvascular endothelial cells (HLMVECs) is highly regulated post-translationally via activation of the B1 kinin G protein-coupled receptor (B1R). We report here that B1R-mediated iNOS activation was significantly inhibited by knockdown of beta-arrestin 2 with siRNA in cytokine-treated HLMVECs or HEK293 cells transfected with iNOS and B1R. In contrast, beta-arrestin 1 siRNA had no effect. The prolonged phase of B1R-dependent ERK activation was also inhibited by beta-arrestin 2 knockdown. Furthermore, robust ERK activation by the epidermal growth factor receptor (a beta-arrestin 2 independent pathway) had no effect on iNOS-derived NO production. beta-arrestin 2 and iNOS coimmunoprecipitated, and there was significant fluorescence resonance energy transfer between CFP-iNOS and beta-arrestin 2-YFP (but not beta-arrestin 1-YFP) that increased 3-fold after B1R stimulation. These data show that beta-arrestin 2 mediates B1R-dependent high-output NO by scaffolding iNOS and ERK to allow post-translational activation of iNOS. This could play a critical role in mediating endothelial function in inflammation.
Beta-arrestin 2 is required for B1 receptor-dependent post-translational activation of inducible nitric oxide synthase.
β-arrestin 2 是 B1 受体依赖性诱导型一氧化氮合酶翻译后激活所必需的
阅读:4
作者:Kuhr Frank K, Zhang Yongkang, Brovkovych Viktor, Skidgel Randal A
| 期刊: | FASEB Journal | 影响因子: | 4.200 |
| 时间: | 2010 | 起止号: | 2010 Jul;24(7):2475-83 |
| doi: | 10.1096/fj.09-148783 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
