Effects of fingolimod administration in a genetic model of cognitive deficits.

芬戈莫德给药对认知缺陷遗传模型的影响

阅读:3
作者:Becker-Krail D, Farrand A Q, Boger H A, Lavin A
Notwithstanding recent advances, cognitive impairments are among the most difficult-to-treat symptoms in neuropsychiatric disorders. Deficits in information processing contributing to memory and sociability impairments are found across neuropsychiatric-related disorders. Previously, we have shown that mutations in the DTNBP1 gene (encoding dystrobrevin-binding protein 1 [dysbindin-1]) lead to abnormalities in synaptic glutamate release in the prefrontal cortex (PFC) and hippocampus and to cognitive deficits; glutamatergic transmission is important for cortical recurrent excitation that allows information processing in the PFC. To investigate possible means of restoring glutamate release and improving cognitive impairments, we assess the effects of increasing endogenous levels of brain-derived neurotrophic factor (BDNF) in a dysbindin-1-deficient mouse model. Increasing endogenous levels of BDNF may aid in remediating cognitive deficits, given the roles of BDNF in synaptic transmission, plasticity, and neuroprotection. To increase BDNF, we use a novel strategy, repeated intraperitoneal injections of fingolimod (Gilenya). Sphingolipids have recently been shown to have therapeutic value in several neurology-related disorders. Both wild-type (WT) and mutant (MUT) genotypes were tested for sociability and recognition memory, followed by measuring endogenous BDNF levels and presynaptic [Ca(2+) ](i) within the PFC. Both genotypes were treated for 1 week with either saline or fingolimod. Relative to WT mice, MUT mice demonstrated impairments in sociability and recognition memory and lower presynaptic calcium. After fingolimod treatment, MUT mice exhibited significant improvements in sociability and recognition memory and increases in presynaptic calcium and endogenous concentrations of BDNF. These results show promise for counteracting the cognitive impairments seen in neuropsychiatric disorders and may shed light on the role of dysbindin-1. © 2016 Wiley Periodicals, Inc.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。