β-Adrenergic receptor (AR) blockers provide substantial clinical benefits, including improving overall survival and left ventricular (LV) function following myocardial infarction (MI), though the mechanisms remain incompletely defined. The transverse-tubule (T-tubule) system of ventricular myocytes is an important determinant of cardiac excitation-contraction function. T-tubule remodeling occurs early during LV failure. We hypothesized that β-AR blockers prevent T-tubule remodeling and thereby provide therapeutic benefits. A murine model of MI was utilized to examine the effect of β-AR blockers on T-tubule remodeling following LV MI. We applied the in situ imaging of T-tubule structure from Langendorff-perfused intact hearts with laser scanning confocal microscopy. We found that MI caused remarkable T-tubule remodeling near the infarction border zone and moderate LV remodeling remote from the MI. Metoprolol and carvedilol administered 6 d after MI for 4 wk each increased the T-tubule integrity at the remote and border zones. At the molecular level, both β-AR blockers restored border and remote zone expression of junctophilin-2 (JP-2), which is involved in T-tubule organization and formation of the T-tubule/sarcoplasmic reticulum junctions. In contrast, β-AR blockers had no significant effects on caveolin-3 expression. In summary, our data show that β-AR antagonists can protect against T-tubule remodeling after MI, suggesting a novel therapeutic mechanism of action for this drug class. Preservation of JP-2 expression may contribute to the beneficial effects of metoprolol and carvedilol on T-tubule remodeling.
β-Adrenergic receptor antagonists ameliorate myocyte T-tubule remodeling following myocardial infarction.
β-肾上腺素能受体拮抗剂可改善心肌梗死后心肌细胞T管重塑
阅读:3
作者:Chen Biyi, Li Yue, Jiang Shuxia, Xie Yu-Ping, Guo Ang, Kutschke William, Zimmerman Kathy, Weiss Robert M, Miller Francis J, Anderson Mark E, Song Long-Sheng
| 期刊: | FASEB Journal | 影响因子: | 4.200 |
| 时间: | 2012 | 起止号: | 2012 Jun;26(6):2531-7 |
| doi: | 10.1096/fj.11-199505 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
