Slc26 anion transporters play crucial roles in transepithelial Cl(-) absorption and HCO(3)(-) secretion; Slc26 protein mutations lead to several diseases. Slc26a9 functions as a Cl(-) channel and electrogenic Cl(-)--HCO(3)(-) exchanger, and can interact with cystic fibrosis transmembrane conductance regulator. Slc26a9(-/-) mice have reduced gastric acid secretion, yet no human disease is currently associated with SLC26A9 coding mutations. Therefore, we tested the function of nonsynonymous, coding, single nucleotide polymorphisms (cSNPs) of SLC26A9. Presently, eight cSNPs are NCBI documented: Y70N, T127N, I384T, R575W, P606L, V622L, V744M, and H748R. Using two-electrode voltage-clamp and anion selective electrodes, we measured the biophysical consequences of these cSNPs. Y70N (cytoplasmic N-terminus) displays higher channel activity and enhanced Cl(-)--HCO(3)(-) exchange. T127N (transmembrane) results in smaller halide currents but not for SCN(-). V622L (STAS domain) and V744M (STAS adjacent) decreased plasma membrane expression, which partially accounts for decreased whole cell currents. Nevertheless, V622L transport is reduced to â¼50%. SLC26A9 polymorphisms lead to several function modifications (increased activity, decreased activity, altered protein expression), which could lead to a spectrum of pathophysiologies. Thus, knowing an individual's SLC26A9 genetics becomes important for understanding disease potentially caused by SLC26A9 mutations or modifying diseases, for example, cystic fibrosis. Our results also provide a framework to understand SLC26A9 transport modalities and structure-function relationships.
Functional analysis of nonsynonymous single nucleotide polymorphisms in human SLC26A9.
人类 SLC26A9 非同义单核苷酸多态性的功能分析
阅读:4
作者:Chen An-Ping, Chang Min-Hwang, Romero Michael F
| 期刊: | Human Mutation | 影响因子: | 3.700 |
| 时间: | 2012 | 起止号: | 2012 Aug;33(8):1275-84 |
| doi: | 10.1002/humu.22107 | 种属: | Human |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
