OBJECTIVE: Klotho is an antiaging hormone present in the kidney that extends the lifespan, regulates kidney function, and modulates cellular responses to oxidative stress. We investigated whether Klotho levels and signaling modulate inflammation in diabetic kidneys. RESEARCH DESIGN AND METHODS: Renal Klotho expression was determined by quantitative real-time PCR and immunoblot analysis. Primary mouse tubular epithelial cells were treated with methylglyoxalated albumin, and Klotho expression and inflammatory cytokines were measured. Nuclear factor (NF)-κB activation was assessed by treating human embryonic kidney (HEK) 293 and HK-2 cells with tumor necrosis factor (TNF)-α in the presence or absence of Klotho, followed by immunoblot analysis to evaluate inhibitor of κB (IκB)α degradation, IκB kinase (IKK) and p38 activation, RelA nuclear translocation, and phosphorylation. A chromatin immunoprecipitation assay was performed to analyze the effects of Klotho signaling on interleukin-8 and monocyte chemoattractant protein-1 promoter recruitment of RelA and RelA serine (Ser)(536). RESULTS: Renal Klotho mRNA and protein were significantly decreased in db/db mice, and a similar decline was observed in the primary cultures of mouse tubule epithelial cells treated with methylglyoxal-modified albumin. The exogenous addition of soluble Klotho or overexpression of membranous Klotho in tissue culture suppressed NF-κB activation and subsequent production of inflammatory cytokines in response to TNF-α stimulation. Klotho specifically inhibited RelA Ser(536) phosphorylation as well as promoter DNA binding of this phosphorylated form of RelA without affecting IKK-mediated IκBα degradation, total RelA nuclear translocation, and total RelA DNA binding. CONCLUSIONS: These findings suggest that Klotho serves as an anti-inflammatory modulator, negatively regulating the production of NF-κB-linked inflammatory proteins via a mechanism that involves phosphorylation of Ser(536) in the transactivation domain of RelA.
Klotho depletion contributes to increased inflammation in kidney of the db/db mouse model of diabetes via RelA (serine)536 phosphorylation.
Klotho 的消耗通过 RelA(丝氨酸)536 磷酸化导致 db/db 糖尿病小鼠模型肾脏炎症增加
阅读:3
作者:Zhao Yanhua, Banerjee Srijita, Dey Nilay, LeJeune Wanda S, Sarkar Partha S, Brobey Reynolds, Rosenblatt Kevin P, Tilton Ronald G, Choudhary Sanjeev
| 期刊: | Diabetes | 影响因子: | 7.500 |
| 时间: | 2011 | 起止号: | 2011 Jul;60(7):1907-16 |
| doi: | 10.2337/db10-1262 | 种属: | Mouse |
| 研究方向: | 免疫/内分泌 | 疾病类型: | 糖尿病 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
