Identification and characterization of DcUCGalT1, a galactosyltransferase responsible for anthocyanin galactosylation in purple carrot (Daucus carota L.) taproots.

对紫胡萝卜(Daucus carota L.)主根中负责花青素半乳糖基化的半乳糖基转移酶 DcUCGalT1 进行鉴定和表征

阅读:5
作者:Xu Zhi-Sheng, Ma Jing, Wang Feng, Ma Hong-Yu, Wang Qiu-Xia, Xiong Ai-Sheng
Purple carrots (Daucus carota ssp. sativus var. atrorubens Alef.) accumulate large amounts of cyanidin-based anthocyanins in their taproots. Cyanidin can be glycosylated with galactose, xylose, and glucose in sequence by glycosyltransferases resulting in cyanidin 3-xylosyl (glucosyl) galactosides in purple carrots. The first step in the glycosylation of cyanidin is catalysis by UDP-galactose: cyanidin galactosyltransferase (UCGalT) transferring the galactosyl moiety from UDP-galactose to cyanidin. In the present study, a gene from 'Deep purple' carrot, DcUCGalT1, was cloned and heterologously expressed in E. coli BL21 (DE3). The recombinant DcUCGalT1 galactosylated cyanidin to produce cyanidin-3-O-galactoside and showed optimal activity for cyanidin at 30 °C and pH 8.6. It showed lower galactosylation activity for peonidin, pelargonidin, kaempferol and quercetin. It accepted only UDP-galactose as a glycosyl donor when cyanidin was used as an aglycone. The expression level of DcUCGalT1 was positively correlated with anthocyanin biosynthesis in carrots. The enzyme extractions from 'Deep purple' exhibited galactosylation activity for cyanidin, peonidin and pelargonidin, while those from 'Kuroda' (a non-purple cultivar) did not.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。