Regulated phosphorylation of a major UDP-glucuronosyltransferase isozyme by tyrosine kinases dictates endogenous substrate selection for detoxification.

酪氨酸激酶对主要UDP-葡萄糖醛酸转移酶同工酶的调节性磷酸化决定了内源性解毒底物的选择

阅读:4
作者:Mitra Partha S, Basu Nikhil K, Basu Mousumi, Chakraborty Sunit, Saha Tapas, Owens Ida S
Whereas UDP-glucuronosyltransferase-2B7 is widely distributed in different tissues, it preferentially detoxifies genotoxic 4-OH-estradiol and 4-OH-estrone (4-OHE(1)) with barely detectable 17β-estradiol (E(2)) conversion following expression in COS-1 cells. Consistent with the UDP-glucuronosyltransferase requirement for regulated phosphorylation, we discovered that 2B7 requires Src-dependent tyrosine phosphorylation. Y236F-2B7 and Y438F-2B7 mutants were null and 90% inactive, respectively, when expressed in COS-1. We demonstrated that 2B7 incorporated immunoprecipitable [(33)P]orthophosphate and that 2B7His, previously expressed in SYF-(Src,Yes,Fyn)(-/-) cells, was Src-supported or phosphorylated under in vitro conditions. Unexpectedly, 2B7 expressed in SYF(-/-) and SYF(+/-) cells metabolized 4-OHE(1) at 10- and 3-fold higher rates, respectively, than that expressed in COS-1, and similar analysis showed that E(2) metabolism was 16- and 9-fold higher than in COS-1. Because anti-Tyr(P)-438-2B7 detected Tyr(P)-438-2B7 in each cell line, results indicated that unidentified tyrosine kinase(s) (TKs) phosphorylated 2B7 in SYF(-/-). 2B7-transfected COS-1 treated with increasing concentrations of the Src-specific inhibitor PP2 down-regulated 4-OHE(1) glucuronidation reaching 60% maximum while simultaneously increasing E(2) metabolism linearly. This finding indicated that increasing PP2 inhibition of Src allows increasing E(2) metabolism caused by 2B7 phosphorylation by unidentified TK(s). Importantly, 2B7 expressed in SYF(-/-) is more competent at metabolizing E(2) in cellulo than 2B7 expressed in COS-1. To confirm Src-controlled 2B7 prevents toxicity, we showed that 2B7-transfected COS-1 efficiently protected against 4-OH-E(1)-mediated depurination. Finally, our results indicate that Src-dependent phosphorylation of 2B7 allows metabolism of 4-OHE(1), but not E(2), in COS-1, whereas non-Src-phosphorylated 2B7 metabolizes both chemicals. Importantly, we determined that 2B7 substrate selection is not fixed but varies depending upon the TK(s) that carry out its required phosphorylation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。