A novel multifunctional factor involved in trans-splicing of chloroplast introns in Chlamydomonas.

衣藻中参与叶绿体内含子反式剪接的新型多功能因子

阅读:3
作者:Merendino Livia, Perron Karl, Rahire Michèle, Howald Isabelle, Rochaix Jean-David, Goldschmidt-Clermont Michel
In the chloroplast of Chlamydomonas reinhardtii, psaA mRNA is spliced in trans from three separate precursors which assemble to form two group II introns. A fourth transcript, tscA, completes the structure of the first intron. Of the fourteen nucleus-encoded factors involved in psaA splicing, only two are required for splicing of both introns. We cloned and characterized the first of these more general factors, Raa1. Consistently with its role in psaA splicing, Raa1 is imported in the chloroplast where it is found in a membrane fraction and is part of a large ribonucleoprotein complex. One mutant, raa1-L137H, is defective for splicing of both introns, but another allelic mutant, raa1-314B, still expresses the 3' part of the Raa1 gene and is deficient only in splicing of intron 2. This observation and a deletion analysis indicate the presence of two domains in Raa1. The C-terminal domain is necessary and sufficient for processing of tscA RNA and splicing of the first intron, while the central domain is essential for splicing of the second intron. The combination of these two functional domains in Raa1 suggests that this new factor may coordinate trans-splicing of the two introns to improve the efficiency of psaA maturation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。