Stress granules are RNA-protein condensates that form in response to an increase in untranslating mRNPs. Stress granules form by the condensation of mRNPs through a combination of protein-protein, protein-RNA, and RNA-RNA interactions. Several reports have suggested that G-rich RNA sequences capable of forming G-quadruplexes promote stress granule formation. Here, we provide three observations arguing that G-tracts capable of forming rG4s do not promote mRNAs partitioning into stress granules in human osteosarcoma cells. First, we observed no difference in the accumulation in stress granules of reporter mRNAs with and without G-tracts in their 3' UTRs. Second, in U-2 OS cell lines with reduced DHX36 expression, which is thought to unwind G-quadruplexes, the partitioning of endogenous mRNAs was independent of their predicted rG4-forming potential. Third, while mRNAs in stress granules initially appeared to have a higher probability of forming rG4s than bulk mRNAs, this effect disappeared when rG4 motif abundance was standardized by mRNA length. However, we observe that in a G3BP1/2 double knockout cell line, reducing DHX36 expression rescued stress granule-like foci formation. This indicates that DHX36 can limit stress granule formation, potentially by unwinding trans rG4s, or limiting other intermolecular RNA-RNA interactions that promote stress granule formation.
Impact of G-tract RNAs and the DHX36 helicase on stress granule composition and formation.
G-tract RNA 和 DHX36 解旋酶对应激颗粒组成和形成的影响
阅读:5
作者:Cheng Li Yi, Ripin Nina, Cech Thomas R, Parker Roy
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jun 17 |
| doi: | 10.1101/2025.06.16.659950 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
