Ribonuclease HI (rnhA) removes the deleterious RNA:DNA hybrids (RDHs) by cleaving its RNA component. The bacterial transcription terminator Rho is an RNA-dependent 5' â 3' helicase capable of unwinding RDH formed on a single-stranded RNA in vitro. We hypothesize that Rho might be directly involved in RDH removal in vivo. Here, we demonstrate that Rho primary RNA-binding site (PBS) mutants defective in RNA binding and helicase activity are synthetically lethal specifically when RNase HI is absent. This lethality was not observed in the absence of RNase HII (rnhB) alone. Rho-PBS mutants in an rnhA- strain exhibited increased plasmid-concatemer and plasmid copy number, altered cell morphology, and were highly susceptible to DNA-damaging agents. These Rho mutants increased the accumulation of RDHs in vivo, suggesting defects in the RDH removal process. Rho was colocalized to RDHs in vivo when RNase HI was absent. Certain catalytically inactive mutants of RNase H that bind to the RDH blocked the entry of Rho to the RDH, inducing cell death, indicating the role of Rho in the removal of deleterious RDHs in the absence of RNase HI. Under in vitro conditions, Rho was capable of binding to the RDHs and unwinding them in a rut-site-dependent manner. Therefore, we concluded that in the absence of RNase HI, Rho, by its RNA-dependent helicase activity, is capable of unwinding RDHs in a rut-site-dependent manner. These results establish the non-transcription terminator role of Rho and its functional synergy with RNase HI in vivo.
The bacterial transcription terminator, Rho, functions as an RNA:DNA hybrid (RDH) helicase in vivo.
细菌转录终止子 Rho 在体内发挥 RNA:DNA 杂交体 (RDH) 解旋酶的作用
阅读:13
作者:Bhosale Ankita, Sen Ranjan
| 期刊: | Biochemical Journal | 影响因子: | 4.300 |
| 时间: | 2025 | 起止号: | 2025 May 26; 482(11):655-74 |
| doi: | 10.1042/BCJ20253089 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
