In the quest for a sustainable economy of the Earth's resources and for renewable sources of energy, a promising avenue is to exploit the vast quantity of polysaccharide molecules contained in green wastes. To that end, the decomposition of pectin appears to be an interesting target because this polymeric carbohydrate is abundant in many fruit pulps and soft vegetables. To quantitatively study this degradation process, here we designed a bioreactor that is continuously fed with de-esterified pectin (PGA). Thanks to the pectate lyases produced by bacteria cultivated in the vessel, the PGA is depolymerized into oligogalacturonates (UGA), which are continuously extracted from the tank. A mathematical model of our system predicted that the conversion efficiency of PGA into UGA increases in a range of coefficients of dilution until reaching an upper limit where the fraction of UGA that is extracted from the bioreactor is maximized. Results from experiments with a continuous reactor hosting a strain of the plant pathogenic bacterium Dickeya dadantii and in which the dilution coefficients were varied quantitatively validated the predictions of our model. A further theoretical analysis of the system enabled an a priori comparison of the efficiency of eight other pectate lyase-producing microorganisms with that of D. dadantii Our findings suggest that D. dadantii is the most efficient microorganism and therefore the best candidate for a practical implementation of our scheme for the bioproduction of UGA from PGA.
Modeling the bioconversion of polysaccharides in a continuous reactor: A case study of the production of oligogalacturonates by Dickeya dadantii.
在连续反应器中模拟多糖的生物转化:以 Dickeya dadantii 生产寡半乳糖醛酸为例
阅读:3
作者:Sepulchre Jacques-Alexandre, Reverchon Sylvie, Gouzé Jean-Luc, Nasser William
| 期刊: | Journal of Biological Chemistry | 影响因子: | 3.900 |
| 时间: | 2019 | 起止号: | 2019 Feb 1; 294(5):1753-1762 |
| doi: | 10.1074/jbc.RA118.004615 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
