Novel keto-alkyl-pyridinium antifungal molecules active in models of in vivo Candida albicans vascular catheter infection and ex vivo Candida auris skin colonization.

新型酮烷基吡啶类抗真菌分子在体内白色念珠菌血管导管感染模型和体外耳念珠菌皮肤定植模型中均表现出活性

阅读:3
作者:Beattie Sarah R, Esan Taiwo, Zarnowski Robert, Eix Emily, Nett Jeniel E, Andes David R, Hagen Timothy, Krysan Damian J
New antifungal therapies are needed for both systemic, invasive infections as well as superficial infections of mucosal and skin surfaces as well as biofilms associated with medical devices. The resistance of biofilm and biofilm-like growth phases of fungi contributes to the poor efficacy of systemic therapies to non-systemic infections. Here, we describe the identification and characterization of a novel keto-alkyl-pyridinium scaffold with broad spectrum activity (2-16 µg/mL) against medically important yeasts and moulds, including clinical isolates resistant to azoles and/or echinocandins. Furthermore, these keto-alkyl-pyridinium agents retain substantial activity against biofilm phase yeast and have direct activity against hyphal A. fumigatus . Although their toxicity precludes use in systemic infections, we found that the keto-alkyl-pyridinium molecules reduce C. albicans fungal burden in a rat model of vascular catheter infection and reduce Candida auris colonization in a porcine ex vivo model. These initial pre-clinical data suggest that molecules of this class may warrant further study and development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。