A symmetric toggle switch explains the onset of random X inactivation in different mammals.

对称的切换开关解释了不同哺乳动物中随机 X 染色体失活的发生

阅读:6
作者:Mutzel Verena, Okamoto Ikuhiro, Dunkel Ilona, Saitou Mitinori, Giorgetti Luca, Heard Edith, Schulz Edda G
Gene-regulatory networks control the establishment and maintenance of alternative gene-expression states during development. A particular challenge is the acquisition of opposing states by two copies of the same gene, as in the case of the long non-coding RNA Xist in mammals at the onset of random X-chromosome inactivation (XCI). The regulatory principles that lead to stable mono-allelic expression of Xist remain unknown. Here, we uncover the minimal regulatory network that can ensure female-specific and mono-alleleic upregulation of Xist, by combining mathematical modeling and experimental validation of central model predictions. We identify a symmetric toggle switch as the basis for random mono-allelic upregulation of Xist, which reproduces data from several mutant, aneuploid and polyploid mouse cell lines with various Xist expression patterns. Moreover, this toggle switch explains the diversity of strategies employed by different species at the onset of XCI. In addition to providing a unifying conceptual framework with which to explore XCI across mammals, our study sets the stage for identifying the molecular mechanisms needed to initiate random XCI.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。