The ACE2 Receptor from Common Vampire Bat (Desmodus rotundus) and Pallid Bat (Antrozous pallidus) Support Attachment and Limited Infection of SARS-CoV-2 Viruses in Cell Culture.

来自普通吸血蝙蝠(Desmodus rotundus)和苍白蝙蝠(Antrozous pallidus)的ACE2受体支持SARS-CoV-2病毒在细胞培养中的附着和有限感染

阅读:4
作者:Bakre Abhijeet, Sweeney Ryan, Espinoza Edna, Suarez David L, Kapczynski Darrell R
During the COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 (SC2) infection was confirmed in various animal species demonstrating a wide host range of the virus. Prior studies have shown that the ACE2 protein is the primary receptor used by the virus to gain cellular entry and begin the replication cycle. In previous studies, we demonstrated that human and various bat ACE2 proteins can be utilized by SC2 viruses for entry. Bats are a suspected natural host of SC2 because of genetic homology with other bat coronaviruses. In this work, we demonstrate that expression of ACE2 genes from the common vampire bat (CVB) (Desmodus rotundus) and the pallid bat (PB) (Antrozous pallidus), supports infection and replication of some SC2 viruses in cell culture. Two cell lines were produced, CVB-ACE2 and PB-ACE2, expressing ACE2 from these bat species along with human TMPRSS2, in a model previously established using a non-permissive chicken DF-1 cell line. Results demonstrate that the original Wuhan lineage (WA1) virus and the Delta variant were able to infect and replicate in either of the bat ACE2 cell lines. In contrast, the Lambda and Omicron variant viruses infected both cell lines, but viral titers did not increase following infection. Viral detection using immunofluorescence demonstrated abundant spike (S) protein staining for the WA1 and Delta variants but little signal for the Lambda and Omicron variants. These studies demonstrate that while ACE2 from CVB and PB can be utilized by SC2 viruses to gain entry for infection, later variants (Lambda and Omicron) replicate poorly in these cell lines. These observations suggest more efficient human adaption in later SC2 variants that become less fit for replication in other animal species.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。