Changes in gene expression associated with skeletal muscle atrophy due to aging are distinct from those due to disuse, suggesting that the response of old muscle to inactivity may be altered. The goal of this study was to identify changes in muscle gene expression that may contribute to loss of adaptability of old muscle. Muscle atrophy was induced in young adult (6-mo) and old (32-mo) male Brown Norway/F344 rats by 2 wk of hindlimb suspension (HS), and soleus muscles were analyzed by cDNA microarrays. Overall, similar changes in gene expression with HS were observed in young and old muscles for genes encoding proteins involved in protein folding (heat shock proteins), muscle structure, and contraction, extracellular matrix, and nucleic acid binding. More genes encoding transport and receptor proteins were differentially expressed in the soleus muscle from young rats, while in soleus muscle from old rats more genes that encoded ribosomal proteins were upregulated. The gene encoding the cold-shock protein RNA-binding motif protein-3 (RBM3) was induced most highly with HS in muscle from old rats, verified by real-time RT-PCR, while no difference with age was observed. The cold-inducible RNA-binding protein (Cirp) gene was also overexpressed with HS, whereas cold-shock protein Y-box-binding protein-1 was not. A time course analysis of RBM3 mRNA abundance during HS showed that upregulation occurred after apoptotic nuclei and markers of protein degradation increased. We conclude that a cold-shock response may be part of a compensatory mechanism in muscles undergoing atrophy to preserve remaining muscle mass and that RBM3 may be a therapeutic target to prevent muscle loss.
Identification of cold-shock protein RBM3 as a possible regulator of skeletal muscle size through expression profiling.
通过表达谱分析鉴定出冷休克蛋白 RBM3 可能是骨骼肌大小的调节因子
阅读:3
作者:Dupont-Versteegden Esther E, Nagarajan Radhakrishnan, Beggs Marjorie L, Bearden Edward D, Simpson Pippa M, Peterson Charlotte A
| 期刊: | American Journal of Physiology-Regulatory Integrative and Comparative Physiology | 影响因子: | 2.300 |
| 时间: | 2008 | 起止号: | 2008 Oct;295(4):R1263-73 |
| doi: | 10.1152/ajpregu.90455.2008 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
