BACKGROUND: Current research suggests that a small set of "driver" mutations are responsible for tumorigenesis while a larger body of "passenger" mutations occur in the tumor but do not progress the disease. Due to recent pharmacological successes in treating cancers caused by driver mutations, a variety of methodologies that attempt to identify such mutations have been developed. Based on the hypothesis that driver mutations tend to cluster in key regions of the protein, the development of cluster identification algorithms has become critical. RESULTS: We have developed a novel methodology, SpacePAC (Spatial Protein Amino acid Clustering), that identifies mutational clustering by considering the protein tertiary structure directly in 3D space. By combining the mutational data in the Catalogue of Somatic Mutations in Cancer (COSMIC) and the spatial information in the Protein Data Bank (PDB), SpacePAC is able to identify novel mutation clusters in many proteins such as FGFR3 and CHRM2. In addition, SpacePAC is better able to localize the most significant mutational hotspots as demonstrated in the cases of BRAF and ALK. The R package is available on Bioconductor at: http://www.bioconductor.org/packages/release/bioc/html/SpacePAC.html. CONCLUSION: SpacePAC adds a valuable tool to the identification of mutational clusters while considering protein tertiary structure.
A spatial simulation approach to account for protein structure when identifying non-random somatic mutations.
在识别非随机体细胞突变时,采用空间模拟方法来考虑蛋白质结构
阅读:4
作者:Ryslik Gregory A, Cheng Yuwei, Cheung Kei-Hoi, Bjornson Robert D, Zelterman Daniel, Modis Yorgo, Zhao Hongyu
| 期刊: | BMC Bioinformatics | 影响因子: | 3.300 |
| 时间: | 2014 | 起止号: | 2014 Jul 3; 15:231 |
| doi: | 10.1186/1471-2105-15-231 | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
