Whole slide images (WSIs) play a vital role in cancer diagnosis and prognosis. However, their gigapixel resolution, lack of pixel-level annotations, and reliance on unimodal visual data present challenges for accurate and efficient computational analysis. Existing methods typically divide WSIs into thousands of patches, which increases computational demands and makes it challenging to effectively focus on diagnostically relevant regions. Furthermore, these methods frequently rely on feature extractors pretrained on natural images, which are not optimized for pathology tasks, and overlook multimodal data sources such as cellular and textual information that can provide critical insights. To address these limitations, we propose the Abnormality-Aware MultiModal (AAMM) learning framework, which integrates abnormality detection and multimodal feature learning for WSI classification. AAMM incorporates a Gaussian Mixture Variational Autoencoder (GMVAE) to identify and select the most informative patches, reducing computational complexity while retaining critical diagnostic information. It further integrates multimodal features from pathology-specific foundation models, combining patch-level, cell-level, and text-level representations through cross-attention mechanisms. This approach enhances the ability to comprehensively analyze WSIs for cancer diagnosis and subtyping. Extensive experiments on normal-tumor classification and cancer subtyping demonstrate that AAMM achieves superior performance compared to state-of-the-art methods. By combining abnormal detection with multimodal feature integration, our framework offers an efficient and scalable solution for advancing computational pathology.
Abnormality-aware multimodal learning for WSI classification.
面向全玻片图像分类的异常感知多模态学习
阅读:10
作者:Dang Thao M, Zhou Qifeng, Guo Yuzhi, Ma Hehuan, Na Saiyang, Dang Thao Bich, Gao Jean, Huang Junzhou
| 期刊: | Frontiers in Medicine | 影响因子: | 3.000 |
| 时间: | 2025 | 起止号: | 2025 Feb 25; 12:1546452 |
| doi: | 10.3389/fmed.2025.1546452 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
