RNAbpFlow: Base pair-augmented SE(3)-flow matching for conditional RNA 3D structure generation.

RNAbpFlow:碱基对增强的SE(3)流匹配,用于条件RNA 3D结构生成

阅读:5
作者:Tarafder Sumit, Bhattacharya Debswapna
MOTIVATION: Despite the groundbreaking advances in deep learning-enabled methods for bimolecular modeling, predicting accurate three-dimensional (3D) structures of RNA remains challenging due to the highly flexible nature of RNA molecules combined with the limited availability of evolutionary sequences or structural homology. RESULTS: We introduce RNAbpFlow, a novel sequence- and base-pair-conditioned SE(3)-equivariant flow matching model for generating RNA 3D structural ensemble. Leveraging a nucleobase center representation, RNAbpFlow enables end-to-end generation of all-atom RNA structures without the explicit or implicit use of evolutionary information or homologous structural templates. Experimental results show that base pairing conditioning leads to broadly generalizable performance improvements over current approaches for RNA topology sampling and predictive modeling in large-scale benchmarking. AVAILABILITY: RNAbpFlow is freely available at https://github.com/Bhattacharya-Lab/RNAbpFlow.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。