During active exploration, hippocampal neurons exhibit nested rhythmic activity at theta ( approximately 8 Hz) and gamma ( approximately 40 Hz) frequencies. Gamma rhythms may be generated locally by interactions within a class of interneurons mediating fast GABA(A) (GABA(A,fast)) inhibitory postsynaptic currents (IPSCs), whereas theta rhythms traditionally are thought to be imposed extrinsically. However, the hippocampus contains slow biophysical mechanisms that may contribute to the theta rhythm, either as a resonance activated by extrinsic input or as a purely local phenomenon. For example, region CA1 of the hippocampus contains a slower class of GABA(A) (GABA(A,slow)) synapses, believed to be generated by a distinct group of interneurons. Recent evidence indicates that these GABA(A,slow) interneurons project to the GABA(A, fast) interneurons that contribute to hippocampal gamma rhythms. Here, we use biophysically based simulations to explore the possible ramifications of interneuronal circuits containing separate classes of GABA(A,fast) and GABA(A,slow) interneurons. Simulated interneuronal networks with fast and slow synaptic kinetics can generate mixed theta-gamma rhythmicity under restricted conditions, including strong connections among each population, weaker connections between the two populations, and homogeneity of cellular properties and drive. Under a broader range of conditions, including heterogeneity, the networks can amplify and resynchronize phasic responses to weak phase-dispersed external drive at theta frequencies to either GABA(A,slow) or GABA(A,fast) cells. GABA(A, slow) synapses are necessary for this process of amplification and resynchronization.
Networks of interneurons with fast and slow gamma-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma-theta rhythm.
具有快速和慢速γ-氨基丁酸A型(GABAA)动力学的中间神经元网络为混合γ-θ节律提供基础
阅读:4
作者:White J A, Banks M I, Pearce R A, Kopell N J
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2000 | 起止号: | 2000 Jul 5; 97(14):8128-33 |
| doi: | 10.1073/pnas.100124097 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
