Different particle determinants induce apoptosis and cytokine release in primary alveolar macrophage cultures.

不同的颗粒决定因素可诱导原代肺泡巨噬细胞培养物发生凋亡和细胞因子释放

阅读:9
作者:Refsnes Magne, Hetland Ragna B, Øvrevik Johan, Sundfør Idunn, Schwarze Per E, LÃ¥g Marit
BACKGROUND: Particles are known to induce both cytokine release (MIP-2, TNF-alpha), a reduction in cell viability and an increased apoptosis in alveolar macrophages. To examine whether these responses are triggered by the same particle determinants, alveolar macrophages were exposed in vitro to mineral particles of different physical-chemical properties. RESULTS: The crystalline particles of the different stone types mylonite, gabbro, basalt, feldspar, quartz, hornfels and fine grain syenite porphyr (porphyr), with a relatively equal size distribution (< or = 10 microm), but different chemical/mineral composition, all induced low and relatively similar levels of apoptosis. In contrast, mylonite and gabbro induced a marked MIP-2 response compared to the other particles. For particles of smaller size, quartz (< or = 2 microm) seemed to induce a somewhat stronger apoptotic response than even smaller quartz (< or = 0.5 microm) and larger quartz (< or = 10 microm) in relation to surface area, and was more potent than hornfels and porphyr (< or = 2 microm). The reduction in cell viability induced by quartz of the different sizes was roughly similar when adjusted to surface area. With respect to cytokines, the release was more marked after exposure to quartz < or = 0.5 microm than to quartz < or = 2 microm and < or = 10 microm. Furthermore, hornfels (< or = 2 microm) was more potent than the corresponding hornfels (< or = 10 microm) and quartz (< or = 2 microm) to induce cytokine responses. Pre-treatment of hornfels and quartz particles < or = 2 microm with aluminium lactate, to diminish the surface reactivity, did significantly reduce the MIP-2 response to hornfels. In contrast, the apoptotic responses to the particles were not affected. CONCLUSION: These results indicate that different determinants of mineral/stone particles are critical for inducing cytokine responses, reduction in cell viability and apoptosis in alveolar macrophages. The data suggest that the particle surface reactivity was critical for cytokine responses, but contributed less to cell death for the types of particles tested. The size-dependent variations, specially in cytokine release, seem not to be explained only by particle surface area.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。