Quantification and rationalization of the higher affinity of sodium over potassium to protein surfaces.

量化并解释钠离子对蛋白质表面亲和力高于钾离子的原因

阅读:3
作者:Vrbka Lubos, Vondrásek Jirí, Jagoda-Cwiklik Barbara, Vácha Robert, Jungwirth Pavel
For a series of different proteins, including a structural protein, enzyme, inhibitor, protein marker, and a charge-transfer system, we have quantified the higher affinity of Na+ over K+ to the protein surface by means of molecular dynamics simulations and conductivity measurements. Both approaches show that sodium binds at least twice as strongly to the protein surface than potassium does with this effect being present in all proteins under study. Different parts of the protein exterior are responsible to a varying degree for the higher surface affinity of sodium, with the charged carboxylic groups of aspartate and glutamate playing the most important role. Therefore, local ion pairing is the key to the surface preference of sodium over potassium, which is further demonstrated and quantified by simulations of glutamate and aspartate in the form of isolated amino acids as well as short oligopeptides. As a matter of fact, the effect is already present at the level of preferential pairing of the smallest carboxylate anions, formate or acetate, with Na+ versus K+, as shown by molecular dynamics and ab initio quantum chemical calculations. By quantifying and rationalizing the higher preference of sodium over potassium to protein surfaces, the present study opens a way to molecular understanding of many ion-specific (Hofmeister) phenomena involving protein interactions in salt solutions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。