Deepbinner: Demultiplexing barcoded Oxford Nanopore reads with deep convolutional neural networks.

Deepbinner:利用深度卷积神经网络对条形码牛津纳米孔测序数据进行解复用

阅读:3
作者:Wick Ryan R, Judd Louise M, Holt Kathryn E
Multiplexing, the simultaneous sequencing of multiple barcoded DNA samples on a single flow cell, has made Oxford Nanopore sequencing cost-effective for small genomes. However, it depends on the ability to sort the resulting sequencing reads by barcode, and current demultiplexing tools fail to classify many reads. Here we present Deepbinner, a tool for Oxford Nanopore demultiplexing that uses a deep neural network to classify reads based on the raw electrical read signal. This 'signal-space' approach allows for greater accuracy than existing 'base-space' tools (Albacore and Porechop) for which signals must first be converted to DNA base calls, itself a complex problem that can introduce noise into the barcode sequence. To assess Deepbinner and existing tools, we performed multiplex sequencing on 12 amplicons chosen for their distinguishability. This allowed us to establish a ground truth classification for each read based on internal sequence alone. Deepbinner had the lowest rate of unclassified reads (7.8%) and the highest demultiplexing precision (98.5% of classified reads were correctly assigned). It can be used alone (to maximise the number of classified reads) or in conjunction with other demultiplexers (to maximise precision and minimise false positive classifications). We also found cross-sample chimeric reads (0.3%) and evidence of barcode switching (0.3%) in our dataset, which likely arise during library preparation and may be detrimental for quantitative studies that use multiplexing. Deepbinner is open source (GPLv3) and available at https://github.com/rrwick/Deepbinner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。