Plasma surface treatment of ceramic particles has emerged as a promising approach for developing biocomposites intended for use in tissue engineering applications. Introducing functional groups on particle surfaces promotes changes in material surface properties, enhancing adhesion, biocompatibility, and reactivity. It can also mitigate degradation during the processing of polymer matrices in composite materials. Therefore, carefully choosing the functionalizing agent responsible for generating the functional groups and selecting appropriate functionalization parameters are significant steps in the plasma surface treatment process. However, in a tissue engineering context, an excess of the functionalizing agent can be harmful, increasing cell toxicity and inhibiting the stimulation of cell growth, consequently delaying or even hindering tissue regeneration. This article examines how the functionalizing agent excess of l-lactic acid (LA) applied in the plasma surface treatment of the filler affects the thermal, rheological, biological, and wettability properties of poly(lactic acid) (PLA) and zinc oxide (ZnO) biocomposites. The investigation reveals that the surface treatment effectively mitigated the catalytic effects of ZnO on PLA degradation during melt processing, regardless of the excess functionalizing agent. There was minimal impact on the material's rheological, thermal, and wettability characteristics, but the LA residue significantly influenced cell proliferation and the biological response. These findings show the importance of removing excess functionalizing agents to obtain biocomposites suitable for tissue engineering applications.
Controlling Plasma-Functionalized Fillers for Enhanced Properties of PLA/ZnO Biocomposites: Effects of Excess l-Lactic Acid and Biomedical Implications.
控制等离子体功能化填料以增强PLA/ZnO生物复合材料的性能:过量l-乳酸的影响及其生物医学意义
阅读:3
作者:Cunha Daniel A L V, Marega Felippe M, Pinto Leonardo A, Backes Eduardo H, Steffen Teresa T, Klok Larissa A, Hammer Peter, Pessan Luiz A, Becker Daniela, Costa Lidiane C
| 期刊: | ACS Applied Materials & Interfaces | 影响因子: | 8.200 |
| 时间: | 2025 | 起止号: | 2025 Mar 26; 17(12):17965-17978 |
| doi: | 10.1021/acsami.4c20196 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
