The molecular circadian clock is a self-regulating transcription/translation cycle of positive (Bmal1, Clock/Npas2) and negative (Per1,2,3, Cry1,2) regulatory components. While the molecular clock has been well characterized in the body's master circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), only a few studies have examined both the positive and negative clock components in extra-SCN brain tissue. Furthermore, there has yet to be a direct comparison of male and female clock gene expression in the brain. This comparison is warranted, as there are sex differences in circadian functioning and disorders associated with disrupted clock gene expression. This study examined basal clock gene expression (Per1, Per2, Bmal1 mRNA) in the SCN, prefrontal cortex (PFC), rostral agranular insula, hypothalamic paraventricular nucleus (PVN), amygdala, and hippocampus of male and female rats at 4-h intervals throughout a 12:12 h light:dark cycle. There was a significant rhythm of Per1, Per2, and Bmal1 in the SCN, PFC, insula, PVN, subregions of the hippocampus, and amygdala with a 24-h period, suggesting the importance of an oscillating molecular clock in extra-SCN brain regions. There were 3 distinct clock gene expression profiles across the brain regions, indicative of diversity among brain clocks. Although, generally, the clock gene expression profiles were similar between male and female rats, there were some sex differences in the robustness of clock gene expression (e.g., females had fewer robust rhythms in the medial PFC, more robust rhythms in the hippocampus, and a greater mesor in the medial amygdala). Furthermore, females with a regular estrous cycle had attenuated aggregate rhythms in clock gene expression in the PFC compared with noncycling females. This suggests that gonadal hormones may modulate the expression of the molecular clock.
Variations in Phase and Amplitude of Rhythmic Clock Gene Expression across Prefrontal Cortex, Hippocampus, Amygdala, and Hypothalamic Paraventricular and Suprachiasmatic Nuclei of Male and Female Rats.
雄性和雌性大鼠前额皮质、海马、杏仁核、下丘脑室旁核和视交叉上核节律时钟基因表达的相位和振幅的变化
阅读:4
作者:Chun Lauren E, Woodruff Elizabeth R, Morton Sarah, Hinds Laura R, Spencer Robert L
| 期刊: | Journal of Biological Rhythms | 影响因子: | 2.100 |
| 时间: | 2015 | 起止号: | 2015 Oct;30(5):417-36 |
| doi: | 10.1177/0748730415598608 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
