The efficiency of organic Rankine cycle is expected to be enhanced via using metal organic heat carriers. Thus, it is important to investigate the properties of organic working fluid in metal organic frameworks (MOFs). In this paper, molecular dynamics method was employed to study the desorption properties of R600, R134a, and their mixtures in MOF-5, IRMOF-16, and MOF-200 structures. The results show that the desorption capacity of pure working fluids are negatively correlated with their molecular size. In mixed refrigerant systems, the desorption of the working medium is competitive, and the higher the proportion of fluorine atoms in the system, the greater the desorption heat in IRMOF-16. It is noteworthy that the behavior of the desorption heat in the other two MOFs is diametrically opposed to this result. The desorption capacity is positively correlated with the average pore size, specific surface area, and porosity of the MOF. The self-diffusion coefficient of the working medium in MOF is inversely proportional to its molecular weight, but directly proportional to its molecular size and to the pore size of MOF.
Desorption properties of the R600, R134a and their mixtures in several MOF structures: A molecular dynamics study.
R600、R134a及其混合物在几种MOF结构中的解吸特性:分子动力学研究
阅读:4
作者:Liu Wei, Wang Nan, Chen Jun, Shen Aijing, Liang Fu
| 期刊: | Heliyon | 影响因子: | 3.600 |
| 时间: | 2023 | 起止号: | 2023 Oct 6; 9(10):e20774 |
| doi: | 10.1016/j.heliyon.2023.e20774 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
