Cytochrome b mutation Y268S conferring atovaquone resistance phenotype in malaria parasite results in reduced parasite bc1 catalytic turnover and protein expression.

疟原虫细胞色素 b 突变 Y268S 赋予疟原虫阿托伐醌抗性表型,导致寄生虫 bc1 催化周转和蛋白质表达降低

阅读:7
作者:Fisher Nicholas, Abd Majid Roslaini, Antoine Thomas, Al-Helal Mohammed, Warman Ashley J, Johnson David J, Lawrenson Alexandre S, Ranson Hilary, O'Neill Paul M, Ward Stephen A, Biagini Giancarlo A
Atovaquone is an anti-malarial drug used in combination with proguanil (e.g. Malarone(TM)) for the curative and prophylactic treatment of malaria. Atovaquone, a 2-hydroxynaphthoquinone, is a competitive inhibitor of the quinol oxidation (Q(o)) site of the mitochondrial cytochrome bc(1) complex. Inhibition of this enzyme results in the collapse of the mitochondrial membrane potential, disruption of pyrimidine biosynthesis, and subsequent parasite death. Resistance to atovaquone in the field is associated with point mutations in the Q(o) pocket of cytochrome b, most notably near the conserved Pro(260)-Glu(261)-Trp(262)-Tyr(263) (PEWY) region in the ef loop). The effect of this mutation has been extensively studied in model organisms but hitherto not in the parasite itself. Here, we have performed a molecular and biochemical characterization of an atovaquone-resistant field isolate, TM902CB. Molecular analysis of this strain reveals the presence of the Y268S mutation in cytochrome b. The Y268S mutation is shown to confer a 270-fold shift of the inhibitory constant (K(i)) for atovaquone with a concomitant reduction in the V(max) of the bc(1) complex of ∼40% and a 3-fold increase in the observed K(m) for decylubiquinol. Western blotting analyses reveal a reduced iron-sulfur protein content in Y268S bc(1) suggestive of a weakened interaction between this subunit and cytochrome b. Gene expression analysis of the TM902CB strain reveals higher levels of expression, compared with the 3D7 (atovaquone-sensitive) control strain in bc(1) and cytochrome c oxidase genes. It is hypothesized that the observed differential expression of these and other key genes offsets the fitness cost resulting from reduced bc(1) activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。