A promising ultra-sensitive CO(2) sensor at varying concentrations and temperatures based on Fano resonance phenomenon in different 1D phononic crystal designs.

基于不同一维声子晶体设计中的法诺共振现象,一种有前景的超灵敏 CO(2) 传感器,可在不同的浓度和温度下工作

阅读:6
作者:Almawgani Abdulkarem H M, Fathy Hamza Makhlouf, Elsayed Hussein A, Abdelrahman Ali Yahya Ali, Mehaney Ahmed
Detecting of the levels of greenhouse gases in the air with high precision and low cost is a very urgent demand for environmental protection. Phononic crystals (PnCs) represent a novel sensor technology, particularly for high-performance sensing applications. This study has been conducted by using two PnC designs (periodic and quasi-periodic) to detect the CO(2) pollution in the surrounding air through a wide range of concentrations (0-100%) and temperatures (0-180 °C). The detection process is physically dependent on the displacement of Fano resonance modes. The performance of the sensor is demonstrated for the periodic and Fibonacci quasi-periodic (S(3) and S(4) sequences) structures. In this regard, the numerical findings revealed that the periodic PnC provides a better performance than the quasi-periodic one with a sensitivity of 31.5 MHz, the quality factor (Q), along with a figure of merit (FOM) of 280 and 95, respectively. In addition, the temperature effects on the Fano resonance mode position were examined. The results showed a pronounced temperature sensitivity with a value of 13.4 MHz/°C through a temperature range of 0-60 °C. The transfer matrix approach has been utilized for modeling the acoustic wave propagation through each PnC design. Accordingly, the proposed sensor has the potential to be implemented in many industrial and biomedical applications as it can be used as a monitor for other greenhouse gases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。