HAD hydrolase function unveiled by substrate screening: enzymatic characterization of Arabidopsis thaliana subclass I phosphosugar phosphatase AtSgpp.

通过底物筛选揭示 HAD 水解酶功能:拟南芥亚类 I 磷酸糖磷酸酶 AtSgpp 的酶学表征

阅读:10
作者:Caparrós-Martín José A, McCarthy-Suárez Iva, Culiáñez-Macià Francisco A
This work presents the isolation and the biochemical characterization of the Arabidopsis thaliana gene AtSgpp. This gene shows homology with the Arabidopsis low molecular weight phosphatases AtGpp1 and AtGpp2 and the yeast counterpart GPP1 and GPP2, which have a high specificity for DL-glycerol-3-phosphate. In addition, it exhibits homology with DOG1 and DOG2 that dephosphorylate 2-deoxy-D-glucose-6-phosphate. Using a comparative genomic approach, we identified the AtSgpp gene as a conceptual translated haloacid dehalogenase-like hydrolase HAD protein. AtSgpp (locus tag At2g38740), encodes a protein with a predicted Mw of 26.7 kDa and a pI of 4.6. Its sequence motifs and expected structure revealed that AtSgpp belongs to the HAD hydrolases subfamily I, with the C1-type cap domain. In the presence of Mg(2+) ions, the enzyme has a phosphatase activity over a wide range of phosphosugars substrates (pH optima at 7.0 and K m in the range of 3.6-7.7 mM). AtSgpp promiscuity is preferentially detectable on D-ribose-5-phosphate, 2-deoxy-D-ribose-5-phosphate, 2-deoxy-D-glucose-6-phosphate, D-mannose-6-phosphate, D-fructose-1-phosphate, D-glucose-6-phosphate, DL-glycerol-3-phosphate, and D-fructose-6-phosphate, as substrates. AtSgpp is ubiquitously expressed throughout development in most plant organs, mainly in sepal and guard cell. Interestingly, expression is affected by abiotic and biotic stresses, being the greatest under Pi starvation and cyclopentenone oxylipins induction. Based on both, substrate lax specificity and gene expression, the physiological function of AtSgpp in housekeeping detoxification, modulation of sugar-phosphate balance and Pi homeostasis, is provisionally assigned.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。