Genome-wide transcriptomic analysis of a desert willow, Salix psammophila, reveals the function of hub genes SpMDP1 and SpWRKY33 in drought tolerance.

对沙漠柳树 Salix psammophila 的全基因组转录组分析揭示了枢纽基因 SpMDP1 和 SpWRKY33 在耐旱性中的作用

阅读:7
作者:Jia Huixia, Zhang Jin, Li Jianbo, Sun Pei, Zhang Yahong, Xin Xuebing, Lu Mengzhu, Hu Jianjun
BACKGROUND: Drought is a major environmental constraint to plant growth, development and productivity. Compared with most willows that are generally susceptible to drought, the desert willow Salix psammophila has extraordinary adaptation to drought stress. However, its molecular basis of drought tolerance is still largely unknown. RESULTS: During polyethylene glycol 6000 (PEG 6000)-simulated drought stress, we found that the osmotic adjustment substances were accumulated and the antioxidant enzyme activities were enhanced in S. psammophila roots. A total of 8172 differentially expressed genes were identified in roots of S. psammophila through RNA-Sequencing. Based on K-means clustering, their expression patterns were classified into nine clusters, which were enriched in several stress-related processes including transcriptional regulation, response to various stresses, cell death, etc. Moreover, 672 transcription factors from 45 gene families were differentially expressed under drought stress. Furthermore, a weighted gene co-expression network was constructed, and eight genes were identified as hub genes. We demonstrated the function of two hub genes, magnesium-dependent phosphatase 1 (SpMDP1) and SpWRKY33, through overexpression in Arabidopsis thaliana. Overexpression of the two hub genes enhanced the drought tolerance in transgenic plants, suggesting that the identification of candidate drought tolerance genes in this study was highly efficient and credible. CONCLUSIONS: Our study analyzed the physiological and molecular responses to drought stress in S. psammophila, and these results contribute to dissect the mechanism of drought tolerance of S. psammophila and facilitate identification of critical genes involved in drought tolerance for willow breeding.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。