Rhodoquinone biosynthesis in C. elegans requires precursors generated by the kynurenine pathway

秀丽隐杆线虫中红醌的生物合成需要犬尿氨酸途径产生的底物。

阅读:1
作者:Samantha Del Borrello # ,Margot Lautens # ,Kathleen Dolan # ,June H Tan ,Taylor Davie ,Michael R Schertzberg ,Mark A Spensley ,Amy A Caudy ,Andrew G Fraser

Abstract

Parasitic helminths infect over a billion humans. To survive in the low oxygen environment of their hosts, these parasites use unusual anaerobic metabolism - this requires rhodoquinone (RQ), an electron carrier that is made by very few animal species. Crucially RQ is not made or used by any parasitic hosts and RQ synthesis is thus an ideal target for anthelmintics. However, little is known about how RQ is made and no drugs are known to block RQ synthesis. C. elegans makes RQ and can use RQ-dependent metabolic pathways - here, we use C. elegans genetics to show that tryptophan degradation via the kynurenine pathway is required to generate the key amine-containing precursors for RQ synthesis. We show that C. elegans requires RQ for survival in hypoxic conditions and, finally, we establish a high throughput assay for drugs that block RQ-dependent metabolism. This may drive the development of a new class of anthelmintic drugs. This study is a key first step in understanding how RQ is made in parasitic helminths. Keywords: C. elegans; anaerobic metabolism; biochemistry; chemical biology; global health; infectious disease; microbiology; parasitic helminth; rhodoquinone.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。