A Deep Learning Tool for Automated Radiographic Measurement of Acetabular Component Inclination and Version After Total Hip Arthroplasty.

一种用于全髋关节置换术后髋臼假体倾斜度和前倾角自动放射影像测量的深度学习工具

阅读:7
作者:Rouzrokh Pouria, Wyles Cody C, Philbrick Kenneth A, Ramazanian Taghi, Weston Alexander D, Cai Jason C, Taunton Michael J, Lewallen David G, Berry Daniel J, Erickson Bradley J, Maradit Kremers Hilal
BACKGROUND: Inappropriate acetabular component angular position is believed to increase the risk of hip dislocation after total hip arthroplasty. However, manual measurement of these angles is time consuming and prone to interobserver variability. The purpose of this study was to develop a deep learning tool to automate the measurement of acetabular component angles on postoperative radiographs. METHODS: Two cohorts of 600 anteroposterior (AP) pelvis and 600 cross-table lateral hip postoperative radiographs were used to develop deep learning models to segment the acetabular component and the ischial tuberosities. Cohorts were manually annotated, augmented, and randomly split to train-validation-test data sets on an 8:1:1 basis. Two U-Net convolutional neural network models (one for AP and one for cross-table lateral radiographs) were trained for 50 epochs. Image processing was then deployed to measure the acetabular component angles on the predicted masks for anatomical landmarks. Performance of the tool was tested on 80 AP and 80 cross-table lateral radiographs. RESULTS: The convolutional neural network models achieved a mean Dice similarity coefficient of 0.878 and 0.903 on AP and cross-table lateral test data sets, respectively. The mean difference between human-level and machine-level measurements was 1.35° (σ = 1.07°) and 1.39° (σ = 1.27°) for the inclination and anteversion angles, respectively. Differences of 5⁰ or more between human-level and machine-level measurements were observed in less than 2.5% of cases. CONCLUSION: We developed a highly accurate deep learning tool to automate the measurement of angular position of acetabular components for use in both clinical and research settings. LEVEL OF EVIDENCE: III.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。