Anti-diabetic Effects of Clostridium butyricum CGMCC0313.1 through Promoting the Growth of Gut Butyrate-producing Bacteria in Type 2 Diabetic Mice.

丁酸梭菌 CGMCC0313.1 通过促进 2 型糖尿病小鼠肠道丁酸产生菌的生长发挥抗糖尿病作用

阅读:5
作者:Jia Lingling, Li Dongyao, Feng Ninghan, Shamoon Muhammad, Sun Zhenghua, Ding Lei, Zhang Hao, Chen Wei, Sun Jia, Chen Yong Q
Patients with type 2 diabetes (T2D) have decreased butyrate-producing bacteria. We hypothesized that supplementation with butyrate-producing bacteria may exert beneficial effects on T2D. The current study investigated the effects of well-characterized butyrate-producing bacteria Clostridium butyricum CGMCC0313.1 (CB0313.1) on hyperglycemia and associated metabolic dysfunction in two diabetic mouse models. CB0313.1 was administered daily by oral gavage to leptin (db/db) mice for 5 weeks starting from 3 weeks of age, and to HF diabetic mice induced by high fat diet (HFD) plus streptozotocin (STZ) in C57BL/6J mice for 13 weeks starting from 4 weeks of age. CB0313.1 improved diabetic markers (fasting glucose, glucose tolerance, insulin tolerance, GLP-1 and insulin secretion), and decreased blood lipids and inflammatory tone. Furthermore, CB0313.1 reversed hypohepatias and reduced glucose output. We also found that CB0313.1 modulated gut microbiota composition, characterized by a decreased ratio of Firmicutes to Bacteroidetes, reduced Allobaculum bacteria that were abundant in HF diabetic mice and increased butyrate-producing bacteria. Changes in gut microbiota following CB0313.1 treatment were associated with enhanced peroxisome proliferator-activated receptor-γ (PPARγ), insulin signaling molecules and mitochondrial function markers. Together, our study suggests that CB0313.1 may act as a beneficial probiotic for the prevention and treatment of hyperglycemia and associated metabolic dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。