BACKGROUND/OBJECTIVES: In this study, the potential effects are evaluated of epigallocatechin gallate (EGCG) on the prognosis of diabetes and insulin resistance. METHODS: In an experiment, 35 male Wistar albino rats were used and in the streptozotocin (STZ)-induced diabetic rats, the effects were examined of different doses (50 mg/kg, 100 mg/kg, 200 mg/kg) of EGCG on metabolic parameters associated with diabetes and insulin resistance. RESULTS: The findings show favorable effects of EGCG on fasting blood glucose levels, insulin secretion, insulin resistance, and beta cell function. In this study, it was observed that EGCG was able to significantly lower fasting blood glucose levels, especially at high doses (200 mg/kg), providing the most significant improvement. Furthermore, EGCG has been found to reduce insulin resistance and improve insulin sensitivity by increasing insulin secretion. When the biochemical parameters of increased insulin secretion are evaluated, it is also observed that it creates clinically significant changes. At doses of 100 mg/kg and 200 mg/kg, EGCG has the potential to help control diabetes by most effectively improving insulin resistance and beta cell function. The study results suggest that EGCG, especially at high doses, is an effective component in the treatment of diabetes and the management of insulin resistance. CONCLUSIONS: The inclusion of EGCG as a natural flavonoid in medical nutrition therapy may contribute to glycemic control and improve insulin sensitivity in individuals with diabetes. These findings suggest that EGCG may be used as an alternative option in the treatment of diabetes and future studies may further clarify the potential benefits in this area.
Exploring the Potential of Epigallocatechin Gallate in Combating Insulin Resistance and Diabetes.
探索表没食子儿茶素没食子酸酯在对抗胰岛素抵抗和糖尿病方面的潜力
阅读:3
作者:Yurtseven Kübra, Yücecan Sevinç
| 期刊: | Nutrients | 影响因子: | 5.000 |
| 时间: | 2024 | 起止号: | 2024 Dec 18; 16(24):4360 |
| doi: | 10.3390/nu16244360 | 研究方向: | 代谢 |
| 疾病类型: | 糖尿病 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
