BACKGROUND: We previously optimized several reconstruction strategies in SPECT myocardial perfusion imaging (MPI) with low dose for perfusion-defect detection. Here we investigate whether reducing the administered activity can also maintain the diagnostic accuracy in evaluating cardiac function. METHODS: We quantified the myocardial motion in cardiac-gated stress 99m-Tc-sestamibi SPECT studies from 163 subjects acquired with full dose (29.8â±â3.6 mCi), and evaluated the agreement of the obtained motion/thickening and ejection fraction (EF) measures at various reduced dose levels (uniform reduction or personalized dose) with that at full dose. We also quantified the detectability of abnormal motion via a receiver-operating characteristics (ROC) study. For reconstruction we considered both filtered backprojection (FBP) without correction for degradations, and iterative ordered-subsets expectation-maximization (OS-EM) with resolution, attenuation and scatter corrections. RESULTS: With dose level lowered to 25% of full dose, the obtained results on motion/thickening, EF and abnormal motion detection were statistically comparable to full dose in both reconstruction strategies, with Pearson's râ>â0.9 for global motion measures between low dose and full dose. CONCLUSIONS: The administered activity could be reduced to 25% of full dose without degrading the function assessment performance. Low dose reconstruction optimized for perfusion-defect detection can be reasonable for function assessment in gated SPECT.
Evaluation of the effect of reducing administered activity on assessment of function in cardiac gated SPECT.
评估减少给药活性对心脏门控SPECT功能评估的影响
阅读:4
作者:Juan Ramon Albert, Yang Yongyi, Wernick Miles N, Pretorius P Hendrik, Johnson Karen L, Slomka Piotr J, King Michael A
| 期刊: | Journal of Nuclear Cardiology | 影响因子: | 2.700 |
| 时间: | 2020 | 起止号: | 2020 Apr;27(2):562-572 |
| doi: | 10.1007/s12350-018-01505-x | 研究方向: | 心血管 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
