Identification and Expression Analysis of Long Noncoding RNAs in Fat-Tail of Sheep Breeds

绵羊品种肥尾中长链非编码RNA的鉴定及表达分析

阅读:6
作者:Mohammad Reza Bakhtiarizadeh, Seyed Alireza Salami

Abstract

Emerging evidence suggests that long non-coding RNAs (lncRNAs) participate in the regulation of a diverse range of biological processes. However, most studies have been focused on a few established model organisms and little is known about lncRNAs in fat-tail development in sheep. Here, the first profile of lncRNA in sheep fat-tail along with their possible roles in fat deposition were investigated, based on a comparative transcriptome analysis between fat-tailed (Lori-Bakhtiari) and thin-tailed (Zel) Iranian sheep breeds. Among all identified lncRNAs candidates, 358 and 66 transcripts were considered novel intergenic (lincRNAs) and novel intronic (ilncRNAs) corresponding to 302 and 58 gene loci, respectively. Our results indicated that a low percentage of the novel lncRNAs were conserved. Also, synteny analysis identified 168 novel lincRNAs with the same syntenic region in human, bovine and chicken. Only seven lncRNAs were identified as differentially expressed genes between fat and thin tailed breeds. Q-RT-PCR results were consistent with the RNA-Seq data and validated the findings. Target prediction analysis revealed that the novel lncRNAs may act in cis or trans and regulate the expression of genes that are involved in the lipid metabolism. A gene regulatory network including lncRNA-mRNA interactions were constructed and three significant modules were found, with genes relevant to lipid metabolism, insulin and calcium signaling pathway. Moreover, integrated analysis with AnimalQTLdb database further suggested six lincRNAs and one ilncRNAs as candidates of sheep fat-tail development. Our results highlighted the putative contributions of lncRNAs in regulating expression of genes associated with fat-tail development in sheep.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。