Identification of a novel small molecule HIF-1alpha translation inhibitor

新型小分子 HIF-1alpha 翻译抑制剂的鉴定

阅读:6
作者:Takuhito Narita, Shaoman Yin, Christine F Gelin, Carlos S Moreno, Manuel Yepes, K C Nicolaou, Erwin G Van Meir

Conclusion

These results show that KC7F2 is a potent HIF-1 pathway inhibitor and its potential as a cancer therapy agent warrants further study.

Purpose

Hypoxia inducible factor-1 (HIF-1), the central mediator of the cellular response to low oxygen, functions as a transcription factor for a broad range of genes that provide adaptive responses to oxygen deprivation. HIF-1 is overexpressed in cancer and has become an important therapeutic target in solid tumors. In this study, a novel HIF-1alpha inhibitor was identified and its molecular mechanism was investigated. Experimental design: Using a HIF-responsive reporter cell-based assay, a 10,000-member natural product-like chemical compound library was screened to identify novel HIF-1 inhibitors. This led us to discover KC7F2, a lead compound with a central structure of cystamine. The effects of KC7F2 on HIF-1 transcription, translation, and protein degradation processes were analyzed.

Results

KC7F2 markedly inhibited HIF-mediated transcription in cells derived from different tumor types, including glioma, breast, and prostate cancers, and exhibited enhanced cytotoxicity under hypoxia. KC7F2 prevented the activation of HIF-target genes such as carbonic anhydrase IX, matrix metalloproteinase 2 (MMP2), endothelin 1, and enolase 1. An investigation into the mechanism of action of KC7F2 showed that it worked through the down-regulation of HIF-1alpha protein synthesis, an effect accompanied by the suppression of the phosphorylation of eukaryotic translation initiation factor 4E binding protein 1 and p70 S6 kinase, key regulators of HIF-1alpha protein synthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。