Ultra-low dose lung CT perfusion regularized by a previous scan.

超低剂量肺部CT灌注成像,并根据之前的扫描结果进行调整

阅读:6
作者:Yu Hengyong, Zhao Shiying, Hoffman Eric A, Wang Ge
RATIONALE AND OBJECTIVES: A previous scan-regularized reconstruction (PSRR) method was proposed to reduce radiation dose and applied to lung perfusion studies. Normal and ultra-low-dose lung computed tomographic perfusion studies were compared in terms of the estimation accuracy of pulmonary functional parameters. MATERIALS AND METHODS: A sequence of sheep lung scans were performed in three prone, anesthetized sheep at normal and ultra-low doses. A scan protocol was developed for the ultra-low-dose studies with electrocardiographic gating: time point 1 for a normal x-ray dose scan (100 kV, 150 mAs) and time points 2 to 21 for low-dose scans (80 kV, 17 mAs). A nonlinear diffusion-based post-filtering method was applied to the difference images between the low-dose images and the high-quality reference image. The final images at 20 time points were generated by fusing the reference image with the filtered difference images. RESULTS: The power spectra of perfusion images and coherences in the normal scans showed a great improvement in image quality of the ultra-low-dose scans with PSRR relative to those without RSRR. The gamma variate fitting and the repeatability of the measurements of the mean transit time demonstrated that the key parameters of lung functions can be reliably accessed using PSRR. The variability of the ultra-low-dose scan results obtained using PSRR was not substantially different from that between two normal-dose scans. CONCLUSIONS: This study demonstrates that an approximate 90% reduction in radiation dose is achievable using PSRR without compromising quantitative computed tomographic measurements of regional lung function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。