Stacking Ensemble and ECA-EfficientNetV2 Convolutional Neural Networks on Classification of Multiple Chest Diseases Including COVID-19.

堆叠集成和 ECA-EfficientNetV2 卷积神经网络在多种胸部疾病(包括 COVID-19)分类中的应用

阅读:7
作者:Huang Mei-Ling, Liao Yu-Chieh
RATIONALE AND OBJECTIVES: Early detection and treatment of COVID-19 patients is crucial. Convolutional neural networks have been proven to accurately extract features in medical images, which accelerates time required for testing and increases the effectiveness of COVID-19 diagnosis. This study proposes two classification models for multiple chest diseases including COVID-19. MATERIALS AND METHODS: The first is Stacking-ensemble model, which stacks six pretrained models including EfficientNetV2-B0, EfficientNetV2-B1, EfficientNetV2-B2, EfficientNetV2-B3, EfficientNetV2-S and EfficientNetV2-M. The second model is self-designed model ECA-EfficientNetV2 based on ECA-Net and EfficientNetV2. Ten-fold cross validation was performed for each model on chest X-ray and CT images. One more dataset, COVID-CT dataset, was tested to verify the performance of the proposed Stacking-ensemble and ECA-EfficientNetV2 models. RESULTS: The best performance comes from the proposed ECA-EfficientNetV2 model with the highest Accuracy of 99.21%, Precision of 99.23%, Recall of 99.25%, F1-score of 99.20%, and (area under the curve) AUC of 99.51% on chest X-ray dataset; the best performance comes from the proposed ECA-EfficientNetV2 model with the highest Accuracy of 99.81%, Precision of 99.80%, Recall of 99.80%, F1-score of 99.81%, and AUC of 99.87% on chest CT dataset. The differences for five metrics between Stacking-ensemble and ECA-EfficientNetV2 models are not significant. CONCLUSION: Ensemble model achieves better performance than single pretrained models. Compared to the SOTA, Stacking-ensemble and ECA-EfficientNetV2 models proposed in this study demonstrate promising performance on classification of multiple chest diseases including COVID-19.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。