Upregulation of thioredoxin contributes to inhibiting diabetic hearing impairment

硫氧还蛋白的上调有助于抑制糖尿病听力障碍

阅读:6
作者:Xiang Ren, Jinjuan Lv, Yuzhen Fu, Na Zhang, Chenghong Zhang, Zhenghao Dong, Maryam Chudhary, Shiwen Zhong, Li Kong, Hui Kong

Aims

Hair cell reduction was related to diabetes-induced hearing loss. Oxidative stress, endoplasmic reticulum stress, and autophagy participate in this process. Thioredoxin (Trx) is a protein with many biological functions which can regulate them. In this study, aiming to clarify protective effect of Trx on diabetic hearing loss and to identify an early potential therapeutic target for diabetic hearing impairment in the future.

Conclusions

Upregulation of Trx protects diabetes-induced cochlear hair cells reduction. The underlying mechanisms were related to the regulation of ER stress through ASK1 and the mitochondrial pathway or autophagy via Txnip.

Methods

Trx transgenic (Tg) mice were used to establish a diabetic model by intraperitoneally injecting streptozotocin (STZ) and with/without SF or PX12 treatment. Succinate dehydrogenase (SDH) staining was used to evaluate the loss of hair cells. The relative expression of related proteins and genes was detected using western blotting and qRT-PCR.

Results

In vivo, loss of outer hair cells was observed. However, it can be delayed Trx overexpression. Moreover, the expression of PGC-1α, bcl-2 and LC3 was increased in Tg(+)-DM mice compared with Tg(-)-DM mice. The expression of ASK1, Txnip, GRP78, CHOP and p62 was decreased in Tg(+)-DM mice compared with Tg(-)-DM mice. Conclusions: Upregulation of Trx protects diabetes-induced cochlear hair cells reduction. The underlying mechanisms were related to the regulation of ER stress through ASK1 and the mitochondrial pathway or autophagy via Txnip.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。