Volume Regulation and Nonosmotic Volume of Individual Human Platelets Quantified by High-Speed Scanning Ion Conductance Microscopy.

利用高速扫描离子电导显微镜定量分析单个人类血小板的体积调节和非渗透体积

阅读:6
作者:Krutzke Konstantin, Seifert Jan, Gawaz Meinrad, Rheinlaender Johannes, Schäffer Tilman E
Platelets are anucleate cells that play an important role in wound closure following vessel injury. Maintaining a constant platelet volume is critical for platelet function. For example, water-induced swelling can promote procoagulant activity and initiate thrombosis. However, techniques for measuring changes in platelet volume such as light transmittance or impedance techniques have inherent limitations as they only allow qualitative measurements or do not work on the single-cell level.Here, we introduce high-speed scanning ion conductance microscopy (HS-SICM) as a new platform for studying volume regulation mechanisms of individual platelets. We optimized HS-SICM to quantitatively image the morphology of adherent platelets as a function of time at scanning speeds up to 7 seconds per frame and with 0.1 fL precision.We demonstrate that HS-SICM can quantitatively measure the rapid swelling of individual platelets after a hypotonic shock and the following regulatory volume decrease (RVD). We found that the RVD of thrombin-, ADP-, and collagen-activated platelets was significantly reduced compared with nonactivated platelets. Applying the Boyle-van't Hoff relationship allowed us to extract the nonosmotic volume and volume fraction on a single-platelet level. Activation by thrombin or ADP, but not by collagen, resulted in a decrease of the nonosmotic volume, likely due to a release reaction, leaving the total volume unaffected.This work shows that HS-SICM is a versatile tool for resolving rapid morphological changes and volume dynamics of adherent living platelets.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。