Persistent tetrodotoxin-sensitive sodium current resulting from U-to-C RNA editing of an insect sodium channel.

昆虫钠通道的 U-to-C RNA 编辑导致持续的河豚毒素敏感钠电流

阅读:4
作者:Liu Zhiqi, Song Weizhong, Dong Ke
The persistent tetrodotoxin (TTX)-sensitive sodium current, detected in neurons of many regions of mammalian brains, is associated with many essential neuronal activities, including boosting of excitatory synaptic inputs, acceleration of firing rates, and promotion of oscillatory neuronal activities. However, the origin and molecular basis of the persistent current have remained controversial for decades. Here, we provide direct evidence that U-to-C RNA editing of an insect sodium channel transcript generates a sodium channel with a persistent current. We detected a persistent TTX-sensitive current in a splice variant of the cockroach sodium channel gene BgNa(v) (formerly para(CSMA)). Site-directed mutagenesis experiments revealed that an F-to-S change at the C-terminal domain of this variant was responsible for the persistent current. We demonstrated that this F-to-S change was the result of a U-to-C RNA editing event, which also occurred in the Drosophila para sodium channel transcript. Our work provides direct support for the hypothesis that posttranscriptional modification of a conventional transient sodium channel produces a persistent TTX-sensitive sodium channel.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。