Emerging treatment strategies for retinal degeneration involve replacing lost photoreceptors using supportive scaffolds to ensure cells survive the implantation process. While many design aspects of these scaffolds, including material chemistry and microstructural cues, have been studied in depth, a full set of design constraints has yet to be established. For example, while known to be important in other tissues and systems, the influence of mechanical properties on surgical handling has not been quantified. In this study, photocrosslinked poly(ethylene glycol) dimethacrylate (PEGDMA) was used as a model polymer to study the effects of scaffold modulus (stiffness) on surgical handling, independent of material chemistry. This was achieved by modulating the molecular weight and concentrations of the PEGDMA in various prepolymer solutions. Scaffold modulus of each formulation was measured using photo-rheology, which enabled the collection of real-time polymerization data. In addition to measuring scaffold mechanical properties, this approach gave insight on polymerization kinetics, which were used to determine the polymerization time required for each sample. Scaffold handling characteristics were qualitatively evaluated using both in vitro and ex vivo trials that mimicked the surgical procedure. In these trials, scaffolds with shear moduli above 35Â kPa performed satisfactorily, while those below this limit performed poorly. In other words, scaffolds below this modulus were too fragile for reliable transplantation. To better compare these results with literature values, the compressive modulus was measured for select samples, with the lower shear modulus limit corresponding to roughly 115Â kPa compressive modulus. While an upper mechanical property limit was not readily apparent from these results, there was increased variability in surgical handling performance in samples with shear moduli above 800Â kPa. Overall, the knowledge presented here provides important groundwork for future studies designed to examine additional retinal scaffold considerations, including the effect of scaffold mechanical properties on retinal progenitor cell fate.
The effect of retinal scaffold modulus on performance during surgical handling.
视网膜支架模量对术中操作性能的影响
阅读:3
作者:Wendland Rion J, Jiao Chunhua, Russell Stephen R, Han Ian C, Wiley Luke A, Tucker Budd A, Sohn Elliott H, Worthington Kristan S
| 期刊: | Experimental Eye Research | 影响因子: | 2.700 |
| 时间: | 2021 | 起止号: | 2021 Jun;207:108566 |
| doi: | 10.1016/j.exer.2021.108566 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
