Minimally invasive treatments such as microwave ablation (MWA) have been growing in popularity for extending liver cancer survival rates in patients, when surgery is not an option. As a non-ionizing, real-time alternative to contrast-enhanced computed tomography, electrode displacement elastography (EDE) has shown promise as an imaging modality for MWA. Despite imaging efficacy, motion artifacts caused by physiological motion result in unintended speckle pattern variance, thereby inhibiting consistent and accurate ablated region visualization. To combat these unavoidable motion artifacts, a Lagrangian deformation tracking (LDT) approach based on freehand EDE was developed to track tissue movement and better define tissue properties. For validating LDT efficacy, a spherical inclusion phantom as well as seven in vivo data sets were processed, and strain tensor images were compared with identical time sampled images estimated using a traditional Eulerian approach. In vivo results revealed greater consistency among visualized LDT strain tensor images, with segmented ablated regions exhibiting standard deviation reductions of up to 98% when compared with Eulerian strain tensor images. Additionally, Lagrangian strain tensor images provided Dice coefficient improvements up to 25%, and success rates improved from approximately 50% to nearly 100% for ablated region visualization.
Physiological Motion Reduction Using Lagrangian Tracking for Electrode Displacement Elastography.
利用拉格朗日追踪技术减少电极位移弹性成像中的生理运动
阅读:3
作者:Pohlman Robert M, Varghese Tomy
| 期刊: | Ultrasound in Medicine and Biology | 影响因子: | 2.600 |
| 时间: | 2020 | 起止号: | 2020 Mar;46(3):766-781 |
| doi: | 10.1016/j.ultrasmedbio.2019.11.001 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
