Comparison of Displacement Tracking Algorithms for in Vivo Electrode Displacement Elastography.

体内电极位移弹性成像位移跟踪算法的比较

阅读:16
作者:Pohlman Robert M, Varghese Tomy, Jiang Jingfeng, Ziemlewicz Timothy J, Alexander Marci L, Wergin Kelly L, Hinshaw James L, Lubner Meghan G, Wells Shane A, Lee Fred T Jr
Hepatocellular carcinoma and liver metastases are common hepatic malignancies presenting with high mortality rates. Minimally invasive microwave ablation (MWA) yields high success rates similar to surgical resection. However, MWA procedures require accurate image guidance during the procedure and for post-procedure assessments. Ultrasound electrode displacement elastography (EDE) has demonstrated utility for non-ionizing imaging of regions of thermal necrosis created with MWA in the ablation suite. Three strategies for displacement vector tracking and strain tensor estimation, namely coupled subsample displacement estimation (CSDE), a multilevel 2-D normalized cross-correlation method, and quality-guided displacement tracking (QGDT) have previously shown accurate estimations for EDE. This paper reports on a qualitative and quantitative comparison of these three algorithms over 79 patients after an MWA procedure. Qualitatively, CSDE presents sharply delineated, clean ablated regions with low noise except for the distal boundary of the ablated region. Multilevel and QGDT contain more visible noise artifacts, but delineation is seen over the entire ablated region. Quantitative comparison indicates CSDE with more consistent mean and standard deviations of region of interest within the mass of strain tensor magnitudes and higher contrast, while Multilevel and QGDT provide higher CNR. This fact along with highest success rates of 89% and 79% on axial and lateral strain tensor images for visualization of thermal necrosis using the Multilevel approach leads to it being the best choice in a clinical setting. All methods, however, provide consistent and reproducible delineation for EDE in the ablation suite.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。