Liver respiratory-induced motion estimation using abdominal surface displacement as a surrogate: robotic phantom and clinical validation with varied correspondence models.

利用腹部表面位移作为替代指标来估计肝脏呼吸引起的运动:机器人模型和临床验证与各种对应模型

阅读:12
作者:Cordón Avila Ana, Abayazid Momen
PURPOSE: This work presents the implementation of an RGB-D camera as a surrogate signal for liver respiratory-induced motion estimation. This study aims to validate the feasibility of RGB-D cameras as a surrogate in a human subject experiment and to compare the performance of different correspondence models. METHODS: The proposed approach uses an RGB-D camera to compute an abdominal surface reconstruction and estimate the liver respiratory-induced motion. Two sets of validation experiments were conducted, first, using a robotic liver phantom and, secondly, performing a clinical study with human subjects. In the clinical study, three correspondence models were created changing the conditions of the learning-based model. RESULTS: The motion model for the robotic liver phantom displayed an error below 3 mm with a coefficient of determination above 90% for the different directions of motion. The clinical study presented errors of 4.5, 2.5, and 2.9 mm for the three different motion models with a coefficient of determination above 80% for all three cases. CONCLUSION: RGB-D cameras are a promising method to accurately estimate the liver respiratory-induced motion. The internal motion can be estimated in a non-contact, noninvasive and flexible approach. Additionally, three training conditions for the correspondence model are studied to potentially mitigate intra- and inter-fraction motion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。