Effect of Mechanical Environment Alterations in 3D Stem Cell Culture on the Therapeutic Potential of Extracellular Vesicles.

机械环境改变对三维干细胞培养中细胞外囊泡治疗潜力的影响

阅读:12
作者:Kang Wu Young, Jung Sunyoung, Jeong Hyundoo, Woo Hyun-Myung, Kang Min-Ho, Bae Hojae, Cha Jae Min
Stem-cell-derived extracellular vesicles (EVs) have emerged as a promising therapeutic option, addressing the limitations of conventional stem cell therapies. However, the variability and poorly defined therapeutic contents of EVs produced under standard 2-dimensional culture conditions present challenges for their clinical application. In this study, we investigated how the therapeutic properties of mesenchymal stem cell (MSC)-derived EVs can be enhanced by culturing MSCs within 3-dimensional hydrogels that have tunable mechanical properties. Our results demonstrate that different mechanical cues from the culture environment can induce specific gene expression changes in MSCs without compromising their inherent characteristics. Furthermore, EVs derived from these MSCs exhibited distinct angiogenic and immunomodulatory activities, which were dependent on the mechanical properties of the hydrogels used. A comprehensive analysis of the cytokines and microRNAs present in the EVs provided additional validation of these findings. By utilizing a noninvasive culture method that eliminates the need for genetic modification or exogenous biochemical supplementation, our approach presents a novel platform for the tailored production of EVs, thereby enhancing their therapeutic potential in regenerative medicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。