An inhibitor-mediated beta-cell dedifferentiation model reveals distinct roles for FoxO1 in glucagon repression and insulin maturation

抑制剂介导的 β 细胞去分化模型揭示了 FoxO1 在胰高血糖素抑制和胰岛素成熟中的不同作用

阅读:5
作者:Tamara Casteels, Yufeng Zhang, Thomas Frogne, Caterina Sturtzel, Charles-Hugues Lardeau, Ilke Sen, Xiaocheng Liu, Shangyu Hong, Florian M Pauler, Thomas Penz, Marlene Brandstetter, Charlotte Barbieux, Ekaterine Berishvili, Thomas Heuser, Christoph Bock, Christian G Riedel, Dirk Meyer, Martin Distel,

Conclusions

Our study provides novel models, molecular targets, and drug candidates for studying and preventing beta-cell dedifferentiation.

Methods

The murine beta-cell line, Min6, was used for primary experiments and high-content screening. Screens encompassed a library of small-molecule drugs representing the chemical and target space of all FDA-approved small molecules with an automated immunofluorescence readout. Validation experiments were performed in a murine alpha-cell line as well as in primary murine and human diabetic islets. Developmental effects were studied in zebrafish and C. elegans models, while diabetic db/db mouse models were used to elucidate global glucose metabolism outcomes.

Objective

The loss of forkhead box protein O1 (FoxO1) signaling in response to metabolic stress contributes to the etiology of type II diabetes, causing the dedifferentiation of pancreatic beta cells to a cell type reminiscent of endocrine progenitors. Lack of

Results

We show that short-term pharmacological FoxO1 inhibition can model beta-cell dedifferentiation by downregulating beta-cell-specific transcription factors, resulting in the aberrant expression of progenitor genes and the alpha-cell marker glucagon. From a high-content screen, we identified loperamide as a small molecule that can prevent FoxO inhibitor-induced glucagon expression and further stimulate insulin protein processing and secretion by altering calcium levels, intracellular pH, and FoxO1 localization. Conclusions: Our study provides novel models, molecular targets, and drug candidates for studying and preventing beta-cell dedifferentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。