Oxidative stress in photodynamic therapy (PDT)-treated tumor cells is known to instigate a strong upregulation of the expression of heat shock proteins. However, the treatment of mouse Lewis lung carcinoma (LLC) cells with Photofrin⢠PDT resulted in the upregulation of heat shock protein 70 (Hsp70) gene not only in these cells but also in co-incubated untreated Hepa 1-6 cells. To investigate whether this phenomenon extends in vivo, LLC tumors growing in C57BL/6 mice were treated with Photofrin⢠PDT. The tumors and the livers from the mice were collected at 4, 8, or 24 h after therapy for quantitative reverse transcriptase polymerase chain reaction-based analysis of Hsp70 gene expression. Increased Hsp70 gene expression was detected in both the tumor and liver tissues and was most pronounced at 4 h after PDT. This effect was inhibited by treatment of host mice with glucocorticoid synthesis inhibitor metyrapone. Hsp70 protein levels in the livers of mice bearing PDT-treated tumors gradually decreased after therapy while serum levels increased at 4 h after therapy and then continually decreased. The exposure of in vitro PDT-treated LLC cells to Hsp70 and subsequent flow cytometry analysis revealed binding of this protein to cells that was dependent on PDT dose and more pronounced with dying than viable cells. Thus, following the induction of tumor injury by PDT, Hsp70 can be produced in the liver and spleen as acute phase reactant and released into circulation, from where it can be rapidly sequestered to damaged tumor tissue to facilitate the disposal of dying cells.
Heat shock protein 70 is acute phase reactant: response elicited by tumor treatment with photodynamic therapy.
热休克蛋白 70 是一种急性期反应物:由光动力疗法治疗肿瘤引起的反应
阅读:4
作者:Merchant Soroush, Korbelik Mladen
| 期刊: | Cell Stress & Chaperones | 影响因子: | 3.200 |
| 时间: | 2011 | 起止号: | 2011 Mar;16(2):153-62 |
| doi: | 10.1007/s12192-010-0227-5 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
