Nitrogen (N) deposition decreases the temporal stability of ecosystem aboveground biomass production (ecosystem stability). However, little is known about how the responses of ecosystem stability differ based on seasonal N enrichment. By adding N in autumn, winter, or growing season, from October 2014 to May 2020, in a temperate grassland in northern China, we found that only N addition in autumn resulted in a significantly positive correlation between ecosystem mean aboveground net primary productivity (ANPP) and its standard deviation and significantly reduced ecosystem stability. Autumn N-induced reduction in ecosystem stability was associated with the vanished negative effect of community-wide species asynchrony (asynchronous dynamics among populations to environmental perturbations) on the standard deviation of ecosystem ANPP in combination with the emerged positive effect of dominance (Simpson's dominance index that indicates the relative weight of dominant species in a community). Our findings indicate that autumn N addition might overestimate the negative effect of annual atmospheric N deposition on ecosystem stability, suggesting that to better evaluate the influence of N deposition in temperate grasslands, both field experiments and global modeling should consider not only the annual N load but also its seasonal dynamics. Moreover, further studies should pay more attention to the alteration in the ecosystem temporal deviations, which might be more sensitive to human-induced environmental changes.
Autumn nitrogen enrichment destabilizes ecosystem biomass production in a semiarid grassland.
秋季氮肥过量会破坏半干旱草原生态系统的生物量生产
阅读:3
作者:Zhang Yuqiu, Ren Zhengru, Lu Haining, Chen Xu, Liu Ruoxuan, Zhang Yunhai
| 期刊: | Fundamental Research | 影响因子: | 6.300 |
| 时间: | 2023 | 起止号: | 2022 Sep 6; 3(2):170-178 |
| doi: | 10.1016/j.fmre.2022.08.014 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
